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Highlights

Temporal Attention Multi-Resolution Fusion of Satellite Image Time-Series, ap-

plied to Landsat-8 and Sentinel-2: all bands, any time, at best spatial resolution

Julien Michel, Jordi Inglada

• A general formulation of the fusion of Satellite Image Time Series (SITS) is

proposed

• A new training strategy and Neural Network architecture solves this general

problem

• This solution avoids several unrealistic assumptions found in the litterature

• The pre-trained model is evaluated on 4 usual tasks using Landsat and Sentinel-2

SITS

• This single model is on-par or better than ad-hoc existing models, with more

benefits
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Abstract

This paper introduces a general formulation for the fusion of Satellite Image Time

Series (SITS) of variable length from several sensors at different spatial resolutions

and acquisition times over the same geographical area. In this formulation, all the

spectral bands from all the input sensors are predicted at the best input spatial res-

olution, and at any observed or non-observed acquisition time requested. To address

this general problem, an advanced Masked Auto-Encoder training strategy is proposed,

utilizing two new loss functions: a Linear-Regression Learned Perceptual Image Sim-

ilarity term to favor high spatial frequency details, and a mask-constrastive term to

ignore clouds and other non-informative areas in the input data. This strategy is ap-

plied to the training of Temporal Attention Multi-Resolution Fusion of Satellite Im-

age Time-Series (TAMRFSITS), a novel Deep Learning architecture designed to im-

plement the proposed general formulation. Experiments with joint Landsat-8/9 and

Sentinel-2 time-series were conducted on four different tasks from the literature and

demonstrate that a single pre-trained TAMRFSITS is on par or better than existing

ad-hoc methods. Moreover, the proposed method relaxes unrealistic assumptions rou-

tinely found in the literature, including: same or similar spectral bands in different

sensors, same-day acquisitions, and scale-invariance of the relationship between high

and low resolution images. To the best of our knowledge, our method is the first to

achieve this range of capabilities with a single model, without making any of these
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assumptions. The complete source code for training and experiments is available here:

https://github.com/Evoland-Land-Monitoring-Evolution/tamrfsits.

Keywords: Super-Resolution, Spatio-Temporal Fusion, Sharpening, Gap-Filling,

Sentinel-2, Landsat, Transformer

1. Introduction

Global coverage of the Earth surface with Satellite Image Time Series (SITS) is

a critical component of the continuous monitoring of our planet Essential Climate

Variables Bojinski et al. (2014) and Essential Biodiversity Variables Jetz et al. (2019).

The Landsat series alone provides 50 years of such constant monitoring Wulder et al.

(2022), and for ten years now Sentinel-2 has complemented the Landsat archive with

higher revisit, higher spatial resolution images. SITS are used to monitor vegetation

Misra et al. (2020), derive Land Cover and Land Use maps Phiri et al. (2020), con-

trol the European Common Agricultural Policy Vajsová et al. (2020) or monitor Water

Bodies Bhangale et al. (2020).

Spatial and temporal resolutions of SITS are important parameters that define the

reachable scale of analysis both in space and time. The revisit time is even more critical

for passive optical sensors, where cloud occurrences obliterates a vast proportions of

the observations Wilson and Jetz (2016). On the other end, there is an increasing num-

ber of orbiting sensors that could complement each other to increase the revisit time

and the spatial resolution. In this paper, we consider the case of two or more contempo-

rary sensors with global coverage and regular revisit, complementary revisit cycles and

spectral bands, and different spatial resolutions. There are a few combinations of such

sensors already flying, the most popular being Landsat 8/9 with Sentinel-2, because of

their complementary revisit cycles Li and Chen (2020). Another already available com-

bination is PlanetScope and Sentinel-2 Latte and Lejeune (2020); Sadeh et al. (2021).

In a near future, possible combinations will include Trishna Lagouarde et al. (2018)

and LSTM Bernard et al. (2023) with Sentinel-2 or Landsat, as well as Sentinel-2 NG

or Landsat-Next. There is therefore a growing need for methods that can jointly lever-

age those continuous sources of earth monitoring. Ideally one would like to transform

2

https://github.com/Evoland-Land-Monitoring-Evolution/tamrfsits


all observations from all sensors into measurements as seen by a ubiquitous sensor: all

wavelengths, any time, at best spatial resolution.

1.1. Existing works

In the literature, this general problem is partly addressed by several families of

sub-problems, with different hypotheses and constraints. Those sub-problems and the

methods that have been proposed to solve them are detailed in section 1.1.1. Another

corpus of work focuses on producing harmonized datasets for identified sets of sensors.

To that end, they propose end-to-end processing frameworks including pre-processing

and sensor-specific features, in addition to leveraging methods from the above litera-

ture. They are summarized in section 1.1.2.

1.1.1. Taxonomy of methods

The relevant methodological subdomains are summarized in Fig. 1. They include

Single and Multi-Image Super-Resolution, Band-Sharpening, Spatio-Temporal Fusion

and Temporal Modeling, all of which are detailed in the following sections. Those

works usually focus on machine learning methodological developments within the con-

straints of existing datasets or subdomain definitions.

Single and Multi Image Super-Resolution. In Single or Multi-Images Super-Resolution

(SISR or MISR) Anwar et al. (2020); Liu et al. (2022), images from a higher resolu-

tion sensor are used to learn a model improving the spatial resolution of one or several

images acquired by a lower resolution sensor. SISR and MISR are inherently ill-posed,

since there can be many High-Resolution (HR) images corresponding to the same ob-

served Low-Resolution (LR) image(s). For this reason, successful SISR and MISR

usually rely on adversarial training Wang et al. (2018); Ledig et al. (2017) to capture the

target data manifold structure during training. Both SISR Galar et al. (2019); Nguyen

et al. (2023); Salgueiro Romero et al. (2020); Pouliot et al. (2018) and MISR Märtens

et al. (2019); Okabayashi et al. (2024); Molini et al. (2019); Ibrahim et al. (2025) have

been applied to remote-sensing imagery. Models are usually trained by using either

simulated or cross-sensor datasets, each having their own strengths and weaknesses,

as analysed in a previous work Michel et al. (2025). Though vastly investigated in the
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Single Image Super-Resolution

T•

Multi Image Super-Resolution

T•• • Band Sharpening

T••

Spatio-Temporal Fusion

T•• •••

Temporal Modeling

T• •

TAMRFSITS (ours)

T•• • •

Figure 1: Overview of capabilities of each relevant methodological subdomain, as compared to our proposed

method. Input SITS are represented along a time-line showing the acquisition times. The Low Resolution

(LR) SITS are represented by small green data-cubes, while the High Resolution (HR) SITS are represented

by large blue data-cubes. Single Image Super-Resolution predicts the LR SITS bands at the same acquisition

time, but at better spatial resolution. Multi-Image Super-Resolution predicts the LR SITS bands at a single

acquisition time but at better spatial resolution, using multiple acquisitions in the input LR SITS. Temporal

modelling provides prediction of the LR SITS bands at unobserved acquisition times, without changing

the spatial resolution. Band Sharpening provides LR SITS bands at better spatial resolution and at same

acquisition times, using simultaneous HR SITS as an auxilliary input. Spatio-Temporal Fusion leverage

simulateneous observation of LR SITS and HR SITS in order to predict LR bands at better spatial resolution,

at acquisition dates when only LR bands are observed. Finally, our proposed methods process joint HR and

LR SITS and predict all HR and LR bands at the HR resolution for any acquisition time.
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literature, SISR and MISR are not well suited for leveraging the synergies between two

global coverage sensors of different spatial resolutions, since they do not integrate the

prior HR information given by HR observations at other dates, which always exists in

the case of global coverage missions. They can not overcome missing data in input

images because it lacks temporal context. Finally, it requires HR reference data with

similar spectral bands and even same-date acquisitions in case of cross-sensor datasets.

This explains why joint Super-Resolution and sensor translation is not represented in

Fig. 1: if a different HR sensor is often used to train the super-resolution model, au-

thors usually try to avoid learning sensor-to-sensor differences Michel et al. (2025), and

consider that the output of the super-resolution model should be the same sensor as the

input with a better spatial resolution. An exception to this is the work of Sambandham

et al. Sambandham et al. (2024), which is covered in section 1.1.2.

Band-Sharpening. Band-sharpening Firozjaei et al. (2022), also known as pan-sharpening

Vivone et al. (2014); Ciotola et al. (2025), or reference-based Super-Resolution Su

et al. (2025); Lutio et al. (2019) depending on the scientific community, aims at using

an auxiliary near-simultaneous High Resolution image (often from the same satellite)

to improve the spatial resolution of an image acquired by a lower resolution sensor. As

opposed to SISR, where HR images are used as a target in the model supervision, in

spatial sharpening HR images are used as an auxiliary input to the model. While adding

HR inputs certainly helps the model to improve the spatial resolution, there is no longer

an HR reference to train the model against. To overcome this problem, researchers in

various remote sensing fields have been using the scale invariance hypothesis, enabling

the use of Wald’s protocol Wald et al. (1997), which is well illustrated in Fig. 2 of

Palsson et al. (2018). It consists in downscaling by a factor k both input and refer-

ence data, training the model to perform r/k → r resolution improvement, and then

applying the trained model to perform r → kr resolution improvement by assuming

scale invariance. This practice is commonplace in thermal sharpening, a branch of spa-

tial sharpening addressing the Thermal Infra Red or Land Surface Temperature (LST)

images Gao et al. (2012); Granero-Belinchon et al. (2019), but it is also used in other

band-sharpening applications when sensor is equipped with different spatial resolutions
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across bands Palsson et al. (2018); Salgueiro et al. (2021).

Several studies show that the scale invariance hypothesis isg unrealistic and can

lead to wrong estimation of local textures Nguyen et al. (2022); Merlin et al. (2010). In

thermal sharpening, most methods only learn the mapping from degraded HR images

to LR images, and then use the learnt model on full HR resolution. During inference,

the model only sees the HR image and can not use local LR observations. This imposes

to learn a new model for each pair of HR and LR mapping. In order to make sure that

predicted dynamic is faithful to the LR observation, residuals between downsampled

prediction and LR observation are often injected to form the final prediction. Nev-

ertheless, the residual signal is inherently a LR signal and may hinder the resolution

improvement achieved by the model.

Band-sharpening seems more equipped that SISR and MISR to solve the problem

at stake: it supports LR bands without HR reference, and in some cases might produce

gap-less outputs, if several HR acquisitions are used to circumvent clouds occurrences

Shao et al. (2019). Yet it relies on the unrealistic scale invariance hypothesis, and is

essentially mono-temporal: it can not extrapolate unseen dates or learn the temporal

dynamics.

Spatio-Temporal Fusion. Spatio-Temporal Fusion (STF) Belgiu and Stein (2019); Xiao

et al. (2023) is a set of methods derived from the initial Spatial and Temporal Adap-

tive Fusion Model (STARFM) Gao et al. (2006). STARFM models the relationship

between concomitant Landsat and MODIS surface reflectances at the same location,

and extrapolates it to a nearby date where only MODIS is observed. It requires LR

and HR simultaneous images both before and after this target date. Model-based im-

provement have followed Belgiu and Stein (2019); Zhu et al. (2018), most of which

extend STARFM or try to overcome its limitations by using more complex models,

without changing or extending this paired configuration. More recently, the model-

based method has been traded for a parametric Deep-Learning (DL) model, including

convolutional layers Tan et al. (2018, 2019); Liu et al. (2019); Tan et al. (2022), ad-

versarial training Zhang et al. (2024); Xie et al. (2024), transformers Wu and Huang

(2024); Yang et al. (2022); Li et al. (2022) and vision transformers Chen et al. (2022).
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It must be stressed than though the DL models proposed in the literature became more

complex, very few of them break free from the limitation of requiring one or two pairs

of simultaneous LR and HR acquisitions. Notable exceptions are Goyena et al. (2023)

and Zhang et al. (2024) where unpaired STF is investigated. They also do not extend

the model temporal capability beyond two dates. Additionally several of these meth-

ods actually require the scale invariance hypothesis for training, and some of them also

require retraining for each target date. Finally, it should be stressed that the model is

usually not informed of the acquisition dates, which prevents the learning of tempo-

ral modelling and the generalization to other time intervals that were not seen during

training.

Temporal Modeling. Temporal modeling refers to the interpolation or forecasting of

SITS Moskolaï et al. (2021). One strong driver of such research is to mitigate the oc-

currence of clouds in passive optical data in order to generate gapless SITS Li et al.

(2021), and most methods handle SITS from a single sensor, with some notable ex-

ceptions Roy et al. (2008); Irigireddy and Bandaru (2025). In Liu et al. (2024), a

transformer is used in the temporal dimension to reconstruct cloudy pixels. The obvi-

ous limitation of temporal modeling is that it does not address the spatial and spectral

part of the problem at stake.

1.1.2. Producing harmonized datasets

In addition to those methodological subdomains, a corpus of work aims at lever-

aging those works to address the broader problem of producing harmonized datasets

from SITS of different sensors. This includes data pre- and post-processing as well as

production strategies.

Some of them are in operational stage, such as the Harmonized Landsat and Sentinel-

2 dataset (HLS) Claverie et al. (2018), where differences between sensors and acqui-

sition conditions are carefully processed into a consistent dataset. Yet HLS does not

improve the spatial resolution of Landsat observation, and instead provides matching

30-meter Sentinel-2 observations. A competing operational method aiming at the same

goals is Sen2like Saunier et al. (2022) where an additional fusion step using a simple

residual compensation yields 10-meter Landsat predictions.
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Aside from HLS and Sen2like, other more prospective works include Wang et al.

(2017), in which Wang et al. propose to use Area-To-Point Regression Kriging (AT-

PRK), a standard STF method based on geo-statistics, to produce 10-meter Landsat

images of corresponding Sentinel-2 bands at times when only Landsat is observed. In

Shao et al. (2019), Shao et al. employ the same idea but replace ATPRK with the

Super Resolution Convolutional Neural Network Dong et al. (2015) , relying on the

scale invariance hypothesis and Wald’s protocol for training and evaluation. This idea

is also used in Latte and Lejeune (2020) to fuse Sentinel-2 and PlanetScope imagery

into a 2.5m Sentinel-2 product, relying again on the scale invariance hypothesis. Ad-

ditionally, their methodology requires retraining the model for each Sentinel-2 image

because of the varying number of input PlanetScope images. The combination of Plan-

etScope with Sentinel-2 is also explored in Sadeh et al. (2021), using simple rule-based

fusion and linear regression in the context of producing Leaf Area Index high resolution

time-series. In Luo et al. (2018) the authors proposed STAIR, later refined into STAIR

2.0 Luo et al. (2020), which is a complete framework for the fusion of SISTS from

multiple sensors sharing similar spectral bands. The methodology leverages same-day

observations to form a series of differences between HR and spatially up-sampled LR

differences. Those differences are then interpolated at acquisition times when only

LR is observed, and added to the up-sampled LR observations. STAIR includes many

pre-processing steps, including spatial registration, spectral adjustment as well as cor-

rection of missing data in Landsat due to faulty detector array. A similar idea to STAIR

is explored in Wang et al. (2024) where high resolution details are obtained by means

of the Smoothing-Sharpening Image Filter. In Mukherjee and Liu (2023), GAN-based

SISR is employed to directly predict High Resolution Sentinel-2 bands from low res-

olution Landsat bands. In Chen et al. (2021), the same idea is applied to the super-

resolution of historical Landsat data, using the overlapping period with Sentinel-2 for

training, and in Sambandham et al. (2024), albeit without adversarial training. In Chang

et al. (2025), the authors leverage the Enhanced Deep Convolutional Spatio-Temporal

Fusion Network Tan et al. (2019) in order to fuse Landsat, MODIS and Sentinel data.

Most of those works require a substantial amount of cross-calibration, assuming that

spectral bands are similar and that same-day acquisitions exist. Most of them have
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limited temporal modelling, and are unable to produce gap-less output or extrapolate

unseen dates for instance.

1.2. Contributions

As shown in the previous section, those different families of methods only address

a sub-part of the following more general problem: predict all bands from all-sensors

at best observed spatial resolution and for any acquisition time, given the observed

SITS from two or more sensors over the same area, without any further assumptions.

We hypothesize that failing to address the big picture not only restricts the capabilities

of those methods, but also requires additional unrealistic assumptions and limitations

to solve the sub-part of the problem at stake. Capabilities, limitations and unrealistic

assumptions of existing methods are summarized in Table 1.

In this paper, we first introduce a mathematical formulation of the general problem

in section 2.1. We then propose a deep-learning architecture (section 2.2) and a training

procedure (section 2.3) that allow to solve it by means of Self Supervised Learning

(SSL). Our proposed model, called Time Attention Multi-Resolution Fusion of Satellite

Image Time Series (TAMRFSITS) has full capabilities and none of the limitations and

unrealistic assumptions of existing families of methods. Fig. 2 illustrates some of those

capabilities on our testing dataset which will be introduced in section 3.1. Though the

proposed model is not limited to a specific pair of sensors and can even handle more

than two sensors, we demonstrate its properties through the fusion of Sentinel-2 and

Landsat-8 time-series in section 3.

2. Proposed method

2.1. Problem Formulation

For the sake of simplicity, the problem formulation is presented for two SITS, one

with high spatial resolution R called S HR and one with low spatial resolution r called

S LR. In addition, we will assume that r is an integer multiple of R:

r = kR, k ∈ N, (1)
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Table 1: Capabilities and limitations of the different categories of methods. Temporal refers to Temporal

Modeling (see section 1.1.1), SR refers to Super-Resolution (see section 1.1.1), Sharpening refers to Band

Sharpening (see section 3.3.2), and STF refers to Spatio-Temporal Fusion (see section 3.3.3). Parents (✓) in-

dicate that some methods in the literature partially achieve the capability or solve the limitation or unrealistic

assumption.

Category of methods Temporal SR Sharpening STF Ours

Capability

Improves spatial resolution ✓ ✓ ✓ ✓

Supports bands without HR reference ✓ ✓ ✓

Produces gap-less outputs ✓ (✓) (✓) ✓

Extrapolates unseen dates ✓ ✓

Learns temporal dynamic ✓ ✓

Limitation solved

Does not require similar bands in sensors ✓ ✓

Does not require same-day acquisitions ✓ (✓) (✓) ✓

Does not use scale invariance hypothesis ✓ ✓ ✓

Is not limited to pairs or triplets ✓ ✓ ✓

Does not require no-data masks as inputs (✓) ✓

Does not require training for each target date ✓ ✓ (✓) (✓) ✓
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Figure 2: Illustration of the TAMRFSITS model capabilities over Area Of Interest 31TFJ for year 2022 (from

the test set, see section 3.1). The model receives 25 Landsat observations and 40 Sentinel-2 observations

as inputs (highlighted in green), and is asked to predict Landsat and Sentinel-2 at different query dates

(highlighted in red). For some query dates, additional Sentinel-2 or Landsat images (e.g. not part of the

model inputs) serve as reference data to compare the prediction with (highlighted in blue). Depending on the

availability of clear or cloudy Sentinel2 or Landsat image in the input, several cases are presented. From top

to bottom: row 1 shows Landsat prediction for a clear Landsat input date, row 2 shows Sentinel-2 predictions

for a clear Sentinel-2 input date, row 3 shows Sentinel-2 prediction compared to true Sentinel-2 image for

a clear Landsat input date, row 4 shows Sentinel-2 and Landsat prediction for a cloudy Landsat input date,

and row 5 shows Sentinel-2 prediction compared to true Sentinel-2 image for a date when neither Landsat

nor Sentinel-2 are seen by the model. Note that the model does not use cloud masks.
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where k is the resolution factor between both SITS. The spatial sampling grid of the

LR SITS can be defined as RLR = R(x0, y0, h,w, r), with:

R(x0, y0, h,w, r) =
{
x0+ (i+0.5)r, i ∈ 0, . . .w−1

}
×
{
y0+ ( j+0.5)r, j ∈ 0, . . . h−1

}
, (2)

where x0 and y0 denotes the coordinates of the upper-left corner of the grid, and h ∈ N

and w ∈ N denotes the integer height and width of the image. Conversely, the spatial

sampling grid of the HR SITS can be written RHR = R(x0, y0,H,W,R), with H = kh

and W = kw. The acquisition times of the LR SITS can be defined as:

TLR =
{
tn, n ∈ 0, . . .NLR − 1

}
, (3)

where NLR ∈ N is the number of acquisitions in LR SITS. Acquisition times for HR

SITS are likewise noted THR. Finally, CLR denotes the set of spectral bands in LR

SITS, and CHR denotes the set of spectral bands in HR SITS, without any further as-

sumption on possible matching bands between CLR and CHR. With those notations,

both the HR and LR SITS can be seen as a collection of measurements sampled from a

universal observation function F(x, y, r, t, c) of spatial location (x, y), spatial resolution

r, acquisition time t and spectral band c:

S LR =
{
F(x, y, r, t, c) with (x, y), t, c ∈ RLR × TLR ×CLR

}
, (4)

S HR =
{
F(x, y, r, t, c) with (x, y), t, c ∈ RHR × THR ×CHR

}
. (5)

For the sake of computation as well as for enforcing spatial and temporal inductive

biases, collections of measurements S LR and S HR are usually organized into tensors of

shape [w, h,NLR, #CLR] (resp. [W,H,NHR, #CHR]), where #CLR (resp. #CHR) denotes

the number of elements in CLR (resp. CHR). Let Tquery denote any other set of acquisi-

tion times. In this paper, we aim at building a parametric function Φ(S LR, S HR,Tquery |

Θ) as well as a training procedure to derive its optimal parameters Θ⋆ so that Φ is able

to infer measurements for all bands in Call = CHR∪CLR at every query acquisition time

in Tquery and sampled on high spatial resolution sampling grid defined by RHR:
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Φ(S LR, S HR,Tquery | Θ
⋆) ≃

{
F(x, y, r, t, c) with (x, y), t, c ∈ RHR × Tquery ×Call

}
. (6)

Note that the output of Φ can be further separated into two SITS with CHR and CLR

channels:

Φ(S LR, S HR,Tquery | Θ
⋆) = (S ⋆LR, S

⋆
HR), (7)

with

S ⋆LR ≃
{
F(x, y, r, t, c) with (x, y), t, c ∈ RHR × Tquery ×CLR

}
, (8)

S ⋆HR ≃
{
F(x, y, r, t, c) with (x, y), t, c ∈ RHR × Tquery ×CHR

}
. (9)

2.2. Architecture

In this work, functionΦ is implemented through a deep-learning architecture called

Temporal Attention Multi-Resolution Fusion of Satellite Image Time Series (TAMRF-

SITS), leveraging residual Convolutional Neural Networks (CNN) in the spatial dimen-

sions and a Transformer in the temporal dimension. The overall architecture follows a

classical encoder - decoder scheme, as presented in Fig. 3. Both S LR and S HR are fed

into the TAMRFSITS encoder which outputs a latent representation S latent comprising

D features, with shape [W,H, #TLR + #THR,D]. It is important to note that unlike many

works in auto-encoders, the time dimension is not projected to a fixed size, and retains

the initial number of observations #TLR + #THR. To obtain predictions for Tquery acqui-

sition times, both Tquery and latent representation S latent are fed into the TAMRFSITS

decoder, which outputs S ⋆LR and S ⋆HR. In the following sections, the architecture of

the encoder (section 2.2.1) and the decoder (section 2.2.2) will be detailed. Intuitively,

TAMRFSITS can be seen as the combination of a Single Image Super-Resolution net-

work in the spatial dimension and a Transformer in the temporal dimension.

2.2.1. Encoder

The workflow of the TAMRFSITS encoder is detailed in Fig. 4 and is composed

of two sequential stages. First, each acquisition date of S LR is processed independently
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Figure 3: Overview of the proposed method. S LR (in green) and S HR (in blue) are fed into the TAMRFSITS

encoder, which outputs latent representation S latent (in red). The latent representation is fed into the TAM-

RFSITS decoder, along with Tquery, which outputs S ⋆LR (in green) and S ⋆HR (in red). The large downward

arrow on the left indicates the processing flow, from top to bottom.
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by a dedicated spatial LR encoder. The same applies to the acquisition dates of S HR,

which are processed independently by a dedicated spatial HR encoder. The resulting

latent SITS are then concatenated along their temporal dimension and processed by a

transformer encoder in the same temporal dimension. Thus, the TAMRFSITS encoder

follows the spatial then temporal encoding paradigm also found in UBARN Dumeur

et al. (2024) or SITS-Former Yuan et al. (2022).

Spatial encoder. The date-wise spatial encoders follow the SRResNet architecture in-

troduced in Ledig et al. (2017) and notably used in ESRGAN Wang et al. (2018). It

consists in chaining several Residual-In-Residual-Dense-Block (RRDB), followed by

an up-sampling operation achieved by bicubic interpolation. The up-sampling is not

applied in the HR encoder. With respect to the original architecture of SRResNet, the

convolution layers after the up-sampling operation are removed. These final layers will

form the spatial part of the TAMRFSITS decoder, presented in section 2.2.2.

The LR spatial encoder outputs F features on a W × H spatial support from the

#CLR input channels on a w × h spatial support. On the other hand, the HR spatial

encoder outputs F features on a W × H spatial support from the #CHR input channels

on a W × H spatial support. Each encoder is therefore specific to the set of spectral

bands (CLR or CHR), and to the spatial resolution it processes. In the outputs of both

encoders, all dimensions match except for the temporal dimension.

Temporal and modality encoder. For a pixel corresponding to a spatial location, the

F features extracted by the date-wise spatial encoders for each date of S HR and each

date of S LR are concatenated into a sequence of measurements. To allow the down-

stream temporal encoder to reason with sensors and acquisition date, the F features

are extended with contextual temporal and sensor information. The temporal context

is obtained through the traditional positional encoding used by transformers in Natural

Language Processing Vaswani (2017). This positional encoding has been extended to

temporal positional encoding in many works on SITS, including Dumeur et al. (2024);

Yuan et al. (2022); Guo et al. (2024). It alternates sine and cosine functions with vary-

ing frequencies:
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Figure 4: Details of TAMRFSITS encoder. The input SITS S LR (in green) and S HR (in blue) are first

passed through separate date-wise spatial encoders based on the Residual-In-Residual-Dense-Block (RRDB)

architecture, including spatial up-sampling of S LR. The resulting series S latent
LR and S latent

HR have matching

dimensions, except for the temporal dimension. The resulting F latent features are then extended with

temporal positional encoding (L features) and a learnable sensor token (M Features). Therefore, each pixel

is converted to a sequence of tokens with a total of D features. This sequence is processed by a pixel-wise

transformer encoder along the temporal dimension, forming the latent SITS S latent . The large downward

arrow on the left indicates the processing flow, from top to bottom.
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Ψ(t, l) =


sin(t/λl/L) if l is even,

cos(t/λbul/L) if l is odd,
l ∈ 0, . . . L − 1, (10)

where L is the number of temporal positional features and λ is a normalization factor.

The L features of the temporal positional encoding are concatenated in the feature

dimension with the F features produced by the date-wise spatial encoder. The sensor

context is obtained from two dedicated learnable sensor tokens of size M, one for

S HR and one for S LR. The corresponding token is also concatenated to the feature

dimension. A pixel (i.e. spatial location) is therefore described by a sequence of #TLR+

#THR tokens of D features. Note, that since the D feature space includes temporal

positional encoding, the order of dates in the latent SITS does not matter.

This pixel-wise sequence of tokens is then processed by a transformer encoder

module as described in Vaswani (2017): the sequence passes through several blocks of

multi-head self-attention followed by a feed-forward network. The resulting pixel-wise

sequences are rearranged into spatial dimensions to form the S latent SITS.

2.2.2. Decoder

The TAMRFSITS decoder operates on the latent SITS S latent produced by the en-

coder as well as on the acquisition time queries Tquery. As shown in Fig. 5, it consists

of a pixel-wise temporal decoder followed by a date-wise spatial decoder.

Temporal decoder. The temporal decoder mechanism is similar to the decoder used

in the cross-reconstruction task of ALISE Dumeur et al. (2024). The first step is to

transform the acquisition time queries Tquery into a sequence of #Tquery tokens of D

features. A temporal positional encoding of size L is computed using eq. 10, and

concatenated to a learnable placeholder of size F + M.

The query sequence and the pixel-wise sequences of S latent are then fed to a mod-

ified transformer decoder instance: the first self attention block is removed, the S latent

sequence serves as keys and values for the multi-head cross-attention block, while the

acquisition time query sequence serves as queries. The resulting output pixel-wise

sequence can be seen as S latent reconstructed at the acquisition times in Tquery.
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Figure 5: Details of TAMRFSITS decoder. The query acquisition times Tquery are transformed into a se-

quence of tokens by means of temporal positional encoding and a learnable placeholder. The query sequence

and the latent SITS S latent are processed by a pixel-wise temporal decoder, starting with a cross-attention

block, which reconstructs S latent at query acquisition times. The resulting SITS is then passed through a

simple spatial decoder in order to predict the resulting S ⋆LR and S ⋆HR SITS. The large downward arrow on the

left indicates the processing flow, from top to bottom.
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Spatial decoder. Following this pixel-wise temporal decoding, the resulting sequences

are rearranged into spatial dimensions and inputted to the date-wise spatial decoder.

This decoder is fairly simple and corresponds to the final two convolutional blocks of

the SRResNet architecture Wang et al. (2018): two convolutional layers, with activation

in-between. The spatial decoder outputs #CLR+#CHR channels, which can then be split

into the two predicted SITS S ⋆LR and S ⋆HR.

2.3. Training strategy

The problem formulation proposed in section 2.1 can be functionally implemented

by the architecture proposed in section 2.2, but finding the optimal parameters Θ⋆

requires a training strategy that pushes toward the desired properties of S ⋆LR and S ⋆HR.

First, predictions should closely match the actual observations that could have been

made on that date. This can be achieved through an SSL strategy, and more specifi-

cally a Masked Auto-Encoder (MAE) strategy He et al. (2021); Liu et al. (2023); Reed

et al. (2022), described in 2.3.1. The reconstruction loss term of the MAE needs to be

adapted to the difference in spatial resolution of the input SITS as described in section

2.3.2.

Second, despite the probable presence of clouds in both LR and HR input SITS,

no cloud masks are required as input to the model. On the other hand predictions

should correspond to ground measurement and be free of clouds or missing data. This

is enforced by the use of a novel loss term inspired from contrastive learning, which is

presented in section 2.3.3.

Third, all predicted bands should have the best spatial resolution among the input

sensors. This is enforced by a dedicated loss term that aims at favoring High Resolution

details in all predictions, which is detailed in section 2.3.4.

2.3.1. Masking Strategy

As opposed to Liu et al. (2024) which adopts a purely random masking strategy,

the masking strategy for TAMRFSITS is randomly drawn from the pool of strategies

described in Table 2. This allows to favor configurations that are unlikely to happen

regularly with random masking, and which are of interest for downstream applications.
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This includes completely missing the HR or LR SITS, or long term forecasting. For

each input SITS, a different strategy is drawn, with random parameters if the strategy

has parameters, in order to maximize the input variability.

The network is trained to reconstruct both masked and unmasked dates in S HR and

S LR, and thus during training Tquery = THR ∪ TLR. Reconstructing unmasked dates dur-

ing training is necessary to ensure that the network will behave correctly on those dates

during inference. It should be reminded that inferring unmasked dates is of interest with

TAMRFSITS, since the model will provide higher resolution versions of unmasked S LR

dates and cloud-free predictions of all unmasked inputs. In the following sections, the

SITS containing the masked dates will be called S m
LR and S m

HR respectively. The total

loss used in order to optimize TAMRFSITS is given by:

L = αm(wm
LRLm

LR + wm
HRLm

HR)︸                        ︷︷                        ︸
masked reconstruction term

+ αc(wc
LRLc

LR + wc
HRLc

HR)︸                       ︷︷                       ︸
clear reconstruction term

+αm(wm
LRκ

m
LR + wm

HRκ
m
HR)︸                       ︷︷                       ︸

masked contrastive term

+ αc(wc
LRκ

c
LR + wc

HRκ
c
HR)︸                      ︷︷                      ︸

clear contrastive term

+αswc
HRLs︸    ︷︷    ︸

spatial term

,
(11)

where superscript c (resp. m) denote clear dates (resp. masked dates), Lc
HR, Lm

HR,

Lc
LR and Lm

LR are reconstruction terms detailed in section 2.3.2, κcHR, κmHR, κcLR and κmLR are

invalid data contrastive terms detailed in section 2.3.3, Ls is the spatial reconstruction

loss term detailed in section 2.3.4, αm, αc and αs are constant weights designed to

balance the different loss terms, and wm
LR (resp. wm

HR, wc
LR, wc

HR) is the ratio of masked

LR dates with respect to the total number of LR and HR dates in the SITS. The next

sections will detail each of those terms.

2.3.2. Reconstruction term

The reconstruction loss terms make use of the Huber loss, introduced in Girshick

(2015) and given by:

Lsmooth
1 (x) =


0.5x2, if |x| ≤ ϵ

ϵ(|x| − 0.5ϵ), otherwise.
(12)

The Lsmooth
1 loss behaves like the L1 loss when differences between predicted and

target values are large, limiting the impact of outliers, and like the L2 when differences
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Table 2: Pool of strategies for MAE training.

Strategy Description Parameter

Random Randomly discard dates from S HR and S LR Discard rate

Gaps Generate periods with where no S HR or S LR are available Length of gaps

No HR Discard S HR entirely N/A

No LR Discard S LR entirely N/A

Forecast Discard all dates in S HR and S LR after a given date Date

Backcast Discard all dates in S HR and S LR before a given date Date

are small, which is better for optimization. In the experiments, it has proven to be

beneficial over the standard MSE (L2), especially in early stages of training. Since

Lsmooth
1 will operate on standardized values, we choose ϵ = 0.1.

Two loss terms are defined for each of S HR and S LR. Loss terms for S HR are given

by:

Lc
HR =

1∑
RHR×T c

HR×CHR
Vc

HR

∑
RHR×T c

HR×CHR

Lsmooth
1

(
S ⋆HR − S c

HR
)
Vc

HR, (13)

Lm
HR =

1∑
RHR×T m

HR×CHR
Vm

HR

∑
RHR×T m

HR×CHR

Lsmooth
1

(
S ⋆HR − S m

HR
)
Vm

HR, (14)

where the sum is performed over all (x, y), t, c ∈ RHR×T c
HR×CHR (resp. RHR×T m

HR×

CHR) and Vc
HR (resp. Vm

HR) is a binary validity mask that is derived from the metadata

of the products and accounts for clouds, shadows, out-of-swath areas, etc. Note that

this mask is only used for the loss computation, and therefore only during training, not

as input to the network. Using such masks is key to learning quality predictions by

avoiding setting cloudy areas as target for the Lsmooth
1 loss.

Because S ⋆LR is of spatial resolution R while S c
LR and S m

LR are of coarser spatial

resolution r, the formulation of the S LR loss terms is adapted as follows:
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Lc
LR =

1∑
RLR×T c

LR×CLR
Vc

LR

∑
RLR×T c

LR×CLR

Lsmooth
1

(
(S ⋆LR ∗ ωσ) ↓k −S c

LR
)
Vc

LR, (15)

Lm
LR =

1∑
RLR×T m

LR×CLR
Vm

LR

∑
RLR×T m

LR×CLR

Lsmooth
1

(
(S ⋆LR ∗ ωσ) ↓k −S m

LR
)
Vm

LR, (16)

where ωσ is a gaussian spatial kernel designed for smoothing the images in S ⋆LR and

↓k is the nearest-neighbour downsampling operator of factor k. Combining those oper-

ators allow to bring high resolution prediction S ⋆LR back to its original low resolution

r.

2.3.3. Invalid data contrastive term

The use of validity masks Vm
HR, Vc

HR, Vm
LR and Vc

LR to mask the reconstruction loss

terms should theoretically help the temporal transformer to learn that input invalid

pixels such as cloud, cloud shadow or missing data are uninformative for the temporal

reconstruction and should not be used. However, those masks from Level 2 products

have commission and omission errors which might actually prevent to learn to ignore

those pixels. To avoid cloud or other invalid pixel leakage into the predictions, we

introduce a invalid contrastive term enforcing the prediction of a masked reference

pixel to be closer to the closest valid pixel in time than to the invalid reference pixel.

This is formulated as a triplet margin loss Balntas et al. (2016):

κLR = max
{
L2
(
S ⋆LR, S

valid
LR
)
− L2
(
S ⋆LR, S

invalid
LR

)
+ margin, 0

}
, (17)

where L2 is the MSE, S invalid
LR represents invalid pixels of S LR, S valid

LR represents

the closest valid pixel in time, and margin is a user-defined threshold. κHR is defined

likewise.

In practice, a threshold on the time distance to the closest valid pixel is used, so

that valid pixels that are too further away in time are not used in the computation of the

contrastive loss term.

2.3.4. Spatial term

The Lc
LR and Lm

LR reconstruction loss terms operate at initial LR resolution. As such,

they can not drive S ⋆LR toward high spatial resolution details, even if S ⋆LR has the spatial
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sampling of RHR. The usual solution to this problem is to assume scale invariance

and apply Wald’s protocol. In our work, this hypothesis is avoided by leveraging the

correlation between S HR and S LR SITS in order to favor high spatial frequencies in

S ⋆LR.

Indeed, during training Tquery = THR ∪ TLR, and both CLR and CHR bands are pre-

dicted for each time in Tquery (see Eq. 7). Therefore, for each acquisition in THR (either

masked or clear in the MAE strategy), predicted bands in S ⋆LR can be compared to

reference HR images in S HR. However, no assumptions have been made regarding cor-

responding bands in CLR and CHR. Therefore, S HR can not be directly used to supervise

the spatial reconstruction of S ⋆LR.

To overcome this issue, we project the CHR channels from S HR onto the CLR chan-

nels of S ⋆LR, by means of a linear regression. Ridge regularization is employed to make

the linear regression more robust to degenerated cases. This linear projection is per-

formed separately for each date in THR, to compensate for the relatively weak estimate

provided by linear regression. This is especially true for bands in CLR that do not have

a close match in CHR or depend on external factors that are not measured by bands in

CHR. The latter case is encountered with the thermal band of Landsat-8, whose primary

driver is meteorological. This linear regression is denoted Λ(S ⋆LR, S HR).

Despite the date-wise estimation of the linear regression, Λ(S ⋆LR, S HR) is still a

weak estimate of S LR. In particular, some local trends might not be correctly accounted

for, and using Λ(S ⋆LR, S HR) for the direct supervision of S ⋆LR might lead to radiometric

distortion of the latter. Since radiometric accuracy is enforced by the reconstruction

loss term of Eq. 15, only the high spatial frequency content of Λ(S ⋆LR, S HR) should

supervise the high spatial frequency content of S ⋆LR. This is achieved through the use

of the Learned Perceptual Image Patch Similarity (LPIPS) Zhang et al. (2018). Indeed,

in a previous work Michel et al. (2025), we demonstrated that LPIPS is especially well

suited for the measurement of difference in spatial frequency content. Furthermore, it

has interesting properties such as being relatively blind to radiometric distortion and

spatial misalignment. The complete spatial reconstruction loss term is given by:

Lspat = LPIPS
(
S ⋆LR,Λ(S ⋆LR, S HR)

)
(18)
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3. Experiments

3.1. Dataset

All the experiments have been conducted using a new Landsat and Sentinel-2

dataset called Landsat to Sentinel-2 (LS2S2), which is publicly available1. This dataset

comprises joint Sentinel-2 and Landsat-8 and Landsat-9 SITS over year 2022. It is

composed of 64 Areas Of Interest (AOIs) for the training set and 41 AOIs for the

testing set, each covering an area of 9.9x9.9 km² (990x990 pixels for Sentinel-2 and

330x330 pixels for Landsat) with the geographical coverage given by Fig. 6. All dates

with more than 25% of clear pixels over the AOI are included in the dataset. This yields

a total of 2 984 Sentinel-2 images and 1 609 Landsat-8 and 9 images in the training set.

Additional statistics about the number of dates per AOI for each sensor are presented

in Table 3. For each sensor, Top-of-Canopy surface reflectance from level 2 products

are used. The spectral bands included in the dataset are presented in Table 4. It can

be observed that the Landsat sensor does not have Red Edge bands or wide Infra-Red,

and conversely Sentinel-2 sensor does not retrieve Land Surface Temperature (LST).

In addition to the spectral bands, corresponding quality masks have been used to derive

a validity mask for each date of each sensor. This dataset has been gather through the

OpenEO API Schramm et al. (2021). Fig. 7 gives an example of SITS extracted from

the LS2S2 dataset.

Table 3: Number of 9.9x9.9 km² images in LS2S2 dataset for each sensor and each split. Average, minimium

and maximum columns show statistics on the number of acquisition dates per AOI, for each sensor.

Sentinel2 Landsat

Total Average Min Max Total Average Min Max

train 2 984 44 11 94 1 581 26 0 61

test 1 609 39 6 98 736 18 1 56

1https://zenodo.org/records/15471890
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Figure 6: Geographical coverage of the LS2S2 dataset, with training AOIs in green and testing AOIs in red.

Table 4: Spectral bands included in the LS2S2 dataset for each sensor. The table layout allows to highlight

which bands are similar between sensors and which bands are only available on one sensor. Despite the

variable spatial resolution accross bands for both Landsat and Sentinel-2, for each sensor all bands are up-

sampled to the maximum resolution with the bicubic interpolator (10 meter for Sentinel-2 and 30 meter for

Landsat).

Sentinel-2 Landsat Description

Band Resolution Band Resolution

B1 30. Deep blue

B02 10. B2 30. Blue

B03 10. B3 30. Green

B04 10. B4 30. Red

B05, B06, B07 20. Red Edge

B08 20. B5 30. Near Infra-Red

B8a 10. Wide Near Infra-Red

B11, B12 20. B6, B7 Short Wavelength Infra-Red

B10 100. Land Surface Temperature
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(a) Landsat 8 and 9 time series

(b) Sentinel-2 time series

Figure 7: Example of SITS from LS2S2 dataset training slice, for UTM tile 31UFR. Invalid pixels according

to quality masks are highlighted in red.
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3.2. Experimental setup

3.2.1. Model and training hyperparameters

The hyperparameters for the TAMRFSITS model have been set experimentally.

Table 6 shows the main hyperparameters for each component, as well as their size

in number of parameters to optimize. It should be noted that with a total of 2.3M

parameters, TAMRFSITS is still a relatively small model compared to the pretrained

VGG instance used in LPIPS for instance, which as 16M parameters.

The LS2S2 training split is subdivided into 2052 training patches and 108 valida-

tion patches, each of 165x165 pixels for Sentinel-2 SITS and 55x55 pixel for Landsat

SITS. Each patch contains the full time-series. TAMRFSITS is trained with the Adam

optimizer Kingma and Ba (2014), with one pair of Sentinel-2 and Landsat SITS passed

at each step, which can be seen as using a batch size of one. In order to avoid mem-

ory errors, if the total number of images for a given step is higher than 50, exceeding

images of both sensors are randomly dropped. The masking strategy parameters are

summarized in Table 5.

TAMRFISTS is trained for 1000 epochs, for a total of 2×106 steps, with validation

steps at the end of each epoch. The best model parameters are selected according to the

validation loss. The best checkpoint according to the loss measured on the validation

patches at the end of each epoch is used as the final model. The initial learning rate

is set to 10−4. After a linear warm-up of one epoch, the cosine annealing with warm

restarts Loshchilov and Hutter (2016) is used to modulate the learning rate, with an

initial period of one epoch and a multiplicative factor of 2. Weights for the different

terms of the loss in Eq. 11 were set empirically to αc=1., αm=0.5 and αs = 1., except for

the LST (B10) band of Landsat-8, for which αs = 0.1. This setting allows to balance

the relative importance of the terms. Intuitively, the reconstruction of masked dates

is more difficult than the reconstruction of clear dates, hence, masked reconstruction

loss terms tend to have higher values. The same applies to the reconstruction of high

frequencies of Landsat-8 LST band, which is more challenging than the others due to

the lower correlation with the HR bands. All codes use Pytorch Paszke et al. (2019)

and run on NDVIA GPU A100 and H100. The total training time is around 10 days on
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a NVIDIA H100 GPU.

Table 5: Parameters of the MAE strategy described in section 2.3.1. First, a strategy is drawn according

to the probability column. Depending on the selected strategy, its parameters are then drawn within the

parameter range. U Stands for the uniform distribution. Gaps length and tipping dates are expressed in Day

of Year (DoY, 1 for 1st of January and 365 for 31th of December).

Strategy Probability Parameter range

Random 0.5 Discard rate ∼ U(0.2,0.7)

Gaps 0.25 Length of gaps ∼ U(30,90)

No HR 0.0625 N/A

No LR 0.0625 N/A

Forecast 0.0625 Tipping date ∼ U(65,300)

Backcast 0.0625 Tipping date ∼ U(65,300)

3.2.2. Metrics

This section describes the metrics used to assess the performances of the trained

TAMRFSITS model, and compare it to other models from the litterature. Following

our previous findings Michel et al. (2025), we retain three qualified metrics, each with

a distinctive purpose:

• RMSE measures the faithfulness to the radiometry of the target image at initial

resolution,

• BRISQUE is a No-Reference Image Quality metrics that grades the global Image

Quality,

• Frequency Restoration (FR) compares the spatial frequency content of the pre-

diction and the target image at initial resolution.

All metrics are measured separately for each band and for each date, either clear

(used as model input) or masked (not used as model input).

RMSE. RMSE is computed with respect to the initial resolution of the target data.

Since S ⋆HR has the same spatial resolution R as S HR, RMS EHR has a simple formula-

tion:
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Table 6: Summary of model hyperparameters for each component of the TAMRFSITS model. The last

column shows the size in number of parameters to optimize for each component.

Component Key parameters #Parameters

LR Spatial Encoder in channels (CLR) 8 797 K

out channels (F) 64

blocks 1

up. factor (k) 3

HR Spatial Encoder in channels (CHR) 10 762 K

out channels (F) 64

blocks 1

up. factor 1

Temporal Encoder positional encoding (L) 64 435 K

sensor token (M) 8

token size (D = F + M + L) 136

feed-forward 256

nb. layers 3

nb. heads 4

Temporal Decoder token size (D = F + M + L) 136

nb. layers 1 145 K

nb. heads 4

Spatial Decoder in channels (D = F + M + L) 136 188 K

out channels (CLR +CHR) 18

Total 2.3 M
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RMS EHR = L2
(
S ⋆HR − S HR

)
. (19)

On the other hand, S ⋆LR has a spatial resolution of R while S LR has a spatial resolu-

tion of r = kR. To be able to compute RMS ELR, S ⋆LR is first smoothed by a gaussian

kernel and down-sampled to a spatial resolution of R, similarly to loss term presented

in eq. 13:

RMS ELR = L2
(
(S ⋆LR ∗ ωσ) ↓k −S LR

)
. (20)

Since RMS ELR is computed at lower resolution r it does not measure the spatial

resolution improvement of S ⋆LR. The remaining two metrics are designed for this pur-

pose.

BRISQUE Score. BRISQUE Mittal et al. (2012) is a No Reference Image Quality (IQ)

which builds local features mapped to IQ score by a Support Vector Regressor. It

is trained on human annotated scores, yielding a score between 0 and 100, 0 being

the best IQ. According to Michel et al. (2025), BRISQUE provides a solid criterion

to measure the sharpness of the image as well as its overall quality, even if it tends to

slightly favor noise. Using a No Reference IQ metric allows providing an insight on the

performances that is not biased by the quality of the reference data, such as unmasked

clouds, which are present in the LS2S2 dataset.

Frequency Restoration. Frequency Domain Analysis is proposed in Michel et al. (2025)

to measure the improvement of the spatial frequency content of super-resolved images.

It consists in analysing the Fourier domain Frequency Attenuation Profile (FAP) for

bandwidth [ fm, fM]. Let

U fm, fM =
{
(u, v) : fm ≤

√
u2 + v2 < fM

}
(21)

denote the set of discrete spatial frequencies (u, v) that lies within a ring defined by fm

and fM in Fourier plane, FAP is given by:

FAP[P]( fm, fM) =
1

#U fm, fM

∑
(u,v)∈U fm , fM

|F [P](u, v)|, (22)
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where #U fm, fM is the number of elements in U fm, fM , and F [P](u, v) is the Discrete

Fourier Transform (DFT) of image P. FAP[P]( fm, fM) is successively computed over

a set of non-overlapping bandwidth intervals as given by the DFT quantization. The

resulting set of values is denoted FAP[P]( fn), n ∈ [0,N] with fn the central frequency

of each frequency intervals. FAP[P]( fn) is averaged across batches and dataset. Finally,

the normalized logarithmicFAP is computed, which gives spatial frequency attenuation

in decibels:

FAP
log[P]( fn) = 10 ·

(
log10

(
FAP[P]( fn)

)
− log10

(
FAP[P]( f0)

))
. (23)

Since there are no High Resolution reference images for S LR and conversely no

Low Resolution input images for S HR, we adopt the No-Reference Actual Frequency

Restoration metric (Michel et al. (2025), eq. 24), which will be abbreviated Frequency

Restoration (FR) in the remaining of the paper:

FRLR =
∑
FAP

log(S ⋆LR) − FAPlog((S LR) ↑k)
)
, (24)

FRHR =
∑
FAP

log(S ⋆HR) − FAPlog(S HR), (25)

where (S LR) ↑k is the bicubic up-sampling of factor k of S LR. FR is also expressed

in decibels.

3.2.3. Dataset particularities

There are three particularities of the LS2S2 dataset which need to be addressed

in the model. First, all Landsat bands are sampled at 30 meter resolution, and all

Sentinel-2 bands are sampled at 10 meter resolution. Therefore, the up-sampling factor

k = 3. This requires a small adaptation of the up-sampling operation in RRDBNet,

which usually performs progressive dyadic up-sampling. Second, despite this constant

spatial sampling resolution for each sensor, some Sentinel-2 spectral bands have a na-

tive resolution of 20 meters, and the LST band of Landsat has a native resolution of

100 meters, as stated in Table 4. This is accounted for in the reconstruction loss term

(section 2.3.2) and in the computation of the RMSE metric (section 3.2.2) by using
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larger gaussian kernels for blurring those bands, independently of the downsampling

factor. Finally, the main driver for the Land Surface Temperature band is meteorologi-

cal. Colder conditions or stronger wind will yield lower LST, while warmer conditions

and weaker wind will yield higher LST. Since the TAMRFSITS is not informed by

meteorological conditions, trying to predict LST at unobserved Landsat date is mean-

ingless. For this reason, the reconstruction loss term (section 2.3.2) and RMSE metric

(section 3.2.2) are only computed for clear Landsat dates for the LST band.

3.3. Results

To our best knowledge, there are no other methods in the literature that provide the

same capabilities as TAMRFSITS (see Table 1). In order to provide an overview of the

performances of the proposed method with respect to existing ones, several tasks have

been identified and assessed on the LS2S2 testing set. They include reconstruction of

Landsat and Sentinel2 dates in gaps of one month in section 3.3.1, band-sharpening

of Sentinel-2 images in section 3.3.2, Spatio-Temporal Fusion in section 3.3.3 and

Thermal Sharpening in section 3.3.4. It is important to note that for all those tasks, a

single pre-trained instance of the TAMRFSITS has been used, without any retraining

or fine-tuning for the specific task.

For each task, baseline methods from the literature have been selected for compari-

son. Competing methods have been selected from existing works that address Sentinel-

2 and Landsat 8 fusion or spatial resolution enhancement. Only methods for which the

implementation was straightforward or for which the authors provided source code and

pre-trained weights have been considered.

3.3.1. Gap-Filling

The first task consists in generating one-month gaps in both Landsat and Sentinel-2

SITS for all AOIs in the testing set, following the scheme of Fig. 8. All acquisitions

in generated gaps are removed from the model input and kept aside for validation.

The model is asked to reconstruct both the missing dates within gaps and the clear

input dates, with all bands at 10 meter spatial resolution. Unfortunately, we did not

find any DL method with open source code and model weights ready to be used to
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perform this task on Sentinel-2 and Landsat in the literature. However, a naive algo-

rithm has been implemented for comparison, corresponding to what is usually used as

pre-processing for downstream applications requiring temporally and spatially aligned

data cubes. This naive method consists in linearly interpolating SITS from each sensor

along the temporal dimension, taking into account the cloud and missing data mask.

Then, all low resolution bands are spatially interpolated to 10 meter resolution with

bicubic up-sampling.
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Figure 8: Gaps generated for the gap-filling task evaluation. When masked is True, the acquisition is removed

from the model input SITS and used for performances evalution.

Table 7 shows the mean and standard-deviation of the three evaluation metrics, for

a subset of Sentinel-2 and Landsat bands (full results are available in appendix 5), sep-

arately for masked dates, which are not in the model inputs, and clear dates, which are

in the model inputs. Since the RMSE is computed at initial resolution, it is expected

that the naive method gives RMSE values that are close to zero for clear dates. When

compared to the naive method, TAMRFSITS consistently provides better RMSE on

masked dates, with a narrower standard deviation, while being on par with the naive

model on clear dates, except for Landsat LST, where RMSE is 4 times higher. How-

ever, it provides better Image Quality for all bands, either clear or masked, lowering

the BRISQUE score by a vast margin. Finally, spectral bands with an initial resolu-
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tion higher than 10 meter have positive FR for TAMRFSITS, while the naive method

provides FR close to zero. This highlight that our model effectively improves the high

spatial frequency content for all bands. This explains why it yields RMSE on clear

dates that are slightly worse than the naive method: those dates have more high resolu-

tion details. Nevertheless, RMSE values are close to the accuracy of level 2A surface

reflectances produced by the MACCS-ATCOR Joint Algorithm (MAJA) Lonjou et al.

(2016) processor, and the LST RMSE is also very low with respect to the expected

accuracy of Temperature - Emissivity separation algorithm Li et al. (2021).

RMSE↓ BRISQUE↓ FR↑

Clear Masked Clear Masked Clear Masked

Band Method mean std mean std mean std mean std mean std mean std

LS B1 naive 0.002 0.001 0.010 0.008 84.6 6.1 84.8 6.0 0.9 1.9 0.7 2.0

tamrfsits 0.005 0.018 0.008 0.004 42.8 14.7 46.1 19.8 6.9 1.8 7.2 2.1

LS B4 naive 0.005 0.002 0.020 0.018 72.6 3.7 72.6 3.4 0.9 1.9 0.9 2.3

tamrfsits 0.007 0.018 0.014 0.010 26.6 10.9 21.2 9.0 7.4 1.6 7.6 1.9

LS B5 naive 0.006 0.001 0.031 0.025 71.1 2.5 71.6 2.1 1.4 2.8 1.0 2.8

tamrfsits 0.012 0.012 0.027 0.014 27.5 12.2 13.6 7.2 7.0 1.9 7.7 2.0

LS B7 naive 0.006 0.001 0.030 0.027 69.9 2.0 70.0 1.8 1.0 2.0 0.9 2.2

tamrfsits 0.009 0.013 0.020 0.014 25.6 12.8 14.7 6.0 7.3 1.5 7.7 1.7

LS LST naive 0.460 0.449 82.3 9.8 1.9 4.5

tamrfsits 1.270 0.927 19.3 20.0 3.2 2.1

S2 B4 naive 0.000 0.000 0.036 0.055 17.5 6.8 18.5 6.7 1.4 2.8 1.2 3.1

tamrfsits 0.011 0.018 0.032 0.049 17.5 8.0 20.9 7.8 1.4 2.8 1.2 3.3

S2 B6 naive 0.008 0.004 0.045 0.046 47.2 4.5 47.9 4.9 1.4 2.2 1.3 2.4

tamrfsits 0.014 0.017 0.040 0.042 12.5 6.2 14.5 6.2 5.8 1.9 5.7 2.4

S2 B8 naive 0.000 0.000 0.052 0.043 12.9 6.3 13.9 6.0 0.8 2.0 0.7 2.4

tamrfsits 0.015 0.017 0.046 0.039 11.8 6.3 16.0 6.9 0.8 1.9 0.6 2.4

S2 B8a naive 0.009 0.004 0.049 0.039 47.3 4.9 47.9 5.1 1.3 2.0 1.2 2.2

tamrfsits 0.016 0.016 0.043 0.036 13.6 6.6 14.5 6.7 5.5 1.6 5.6 2.1

S2 B12 naive 0.005 0.002 0.029 0.019 52.9 6.2 53.8 6.4 1.5 2.2 1.4 2.4

tamrfsits 0.010 0.007 0.026 0.017 15.8 10.6 15.4 6.3 6.3 2.1 6.0 2.3

Table 7: Comparison between TAMRFSITS model and naive interpolation on the gap-filling task, where

regular gaps of 30 days are masked from the input SITS and kept appart for validation. Only a selection of

spectral bands is presented. Full results are available in appendix 5. ↓ (resp. ↑) indicates that the metric

should be minimized (resp. maximized). Best mean values for each metric and each band are highlighted in

bold. Clear designate dates for which the bands were observed by the model, and masked designates the

dates that were removed from the input SITS as described in Fig. 8.
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Figure 9: TAMRFSITS compared to naive baseline in interpolating a target date in generated gaps, for

tile 31TCJ, for Sentinel-2, 2022-04-10 (top row) and Landsat, 2022-02-10 (bottom row). Sentinel-2 color

composition is (B7, B6, B5), while Landsat color composition is natural colors (RGB). Interpolation artifacts

caused by mask transition in the naive method are especially visible on the RGB output.
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Fig. 9 shows predictions of both TAMRFSITS for a target date located in a gap

period for tile 31TCJ. It highlights an important benefit of TAMRFSITS that is not

reflected in RMSE: temporal interpolation relies on L2A clouds masks. Depending

on those masks, neighboring pixels be interpolated with different dates, yielding ar-

tifacts following the mask delineation, which are clearly visible on the bottom row.

TAMRFSITS, on the other hand, does not use the cloud masks as input, and there-

fore yields images that are free from those artifacts. It can also be observed that in

addition to predicting consistent surface reflectance values with respect to the refer-

ence image, TAMRFSITS also improves the spatial resolution of the spectral bands for

both Sentinel-2 and Landsat. In contrast, the naive model only performs spatial bicubic

up-sampling, yielding blurry 10 meter resolution data. This highlights the benefits of

using TAMRFSITS as both a temporal interpolation method and a spatial resolution

enhancement method.

3.3.2. Band-Sharpening

The second evaluation task consist in sharpening the 20 meter Sentinel-2 bands

(see Table 4) to 10 meter resolution. TAMRFSITS systematically outputs sharpened

predictions for 20 meter Sentinel-2 bands, regardless of whether the query date has

been observed by the model or not. In this experiment, it is compared to the DSen2

model Lanaras et al. (2018) , a network that performs similar Sentinel-2 20 meter bands

sharpening for a given Sentinel-2 image. DSen2 is applied to each Sentinel-2 acqui-

sition throughout the testing set. On the other hand TAMRFSITS is fed with the full

Sentinel-2 SITS for a given AOI, without the Landsat corresponding SITS, and is asked

to predict all input Sentinel-2 dates. In addition to sharpening the 20-meter bands, it

will therefore also remove clouds and no-data areas. The three evaluation metrics are

computed with respect to the input 20 meter spectral bands for both methods, taking

into account their validity mask to compute RMSE.

Table 8 shows the comparative performances obtained for a subset of the spectral

bands (full results are available in appendix 5), namely one Red Edge band, the Nar-

row Near Infra-Red band and one of the SWIR bands. It shows that TAMRFSITS is

globally on par with DSen2. It tends to yield slightly higher RMSE with respect to the
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input image, but better Image Quality according to the BRISQUE score, and slightly

better sharpening according to the FR score. This is confirmed by the visual inspec-

tion of Fig. 10: Dsen2 predictions look less sharp that those from TAMRFSITS, even

if both manage to improve on the bicubic up-sampling of the input Sentinel-2 image.

The slightly higher RMSE of the TAMRFSITS prediction is barely noticeable. An ad-

ditional benefit of using TAMRFSITS over DSen2 is of course its ability to seamlessly

interpolate cloudy pixels, as demonstrated in Fig. 11.

RMSE↓ BRISQUE↓ FR↑

Band Method mean std mean std mean std

B6 dsen2 0.003 0.001 25.34 5.27 4.5 0.5

tamrfsits 0.013 0.014 12.86 6.18 5.9 1.9

B8a dsen2 0.004 0.001 24.90 5.47 4.5 0.4

tamrfsits 0.015 0.014 13.94 6.50 5.6 1.7

B12 dsen2 0.002 0.001 32.18 4.99 4.0 0.7

tamrfsits 0.010 0.009 15.78 9.71 6.4 2.0

Table 8: Comparison between TAMRFSITS and DSen2 on the sharpening of Sentinel-2 20m bands, for a

selection of bands. ↓ (resp. ↑) indicates that the metric should be minimized (resp. maximized). Best mean

values for each band and each metric are highlighted in bold. Full results are available in appendix 5.

3.3.3. Spatio-Temporal Fusion

The next task aims at predicting Sentinel-2 at times when only Landsat has been

observed, by optionally leveraging Sentinel-2 acquisitions from other time steps. Using

the LS2S2 test set, this use case is simulated by removing all Sentinel-2 acquisitions

occurring on same date as Landsat from the model input and keeping them as references

for validation. The performances are compared to STAIR and Sen2Like, which are

rule-based fusion methods, and to Deep-Harmonization Sambandham et al. (2024) and

DSTFN Wu et al. (2022), which are DL based methods. All those methods share the

same assumption of matching bands between Landsat and Sentinel-2. As such, they do

not predict the Red Edge bands, nor the Wide Near Infra Red band (see Table 4).

Sen2like Saunier et al. (2022) is a processing chain providing harmonized surface
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Figure 10: Examples of predictions from DSEN2 and TAMRFSITS over tile 31TFJ, 2022-08-07, for Red-

Edge color composition (B7,B6,B5) and SWIR color composition (B8a, B11, B12). Inputs are captioned in

green, predictions are captioned in red.

Figure 11: Examples of predictions from DSEN2 and TAMRFSITS over tile 31TFJ, 2022-09-29, where the

input Sentinel-2 image is cloudy, for Red-Edge color composition (B7,B6,B5) and SWIR color composition

(B8a, B11, B12). Inputs are captioned in green, predictions are captioned in red.
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reflectances by means of spatial registration and careful radiative transfer modelling.

Though the standard output is produced at 30 meter resolution, an optional fusion rule

is proposed in order to up-sample the prediction to 10 meter resolution. For a given

Landsat target date, it consists in finding the two closest Sentinel-2 anterior dates with

low cloud cover, and build a linear model to interpolate them at the target date. The

predicted image is then High Pass filtered to extract the high resolution details, which

are added to the target Landsat image. Note that though in Sen2like the 2 dates are

searched among the previous predictions in an auto-regressive fashion, in our work

they are searched among the available Sentinel-2 dates. As such, we do not compare

with the full Sen2like process but only with the temporal extrapolation and spatial fu-

sion methods implemented in Sen2like. STAIR Luo et al. (2018) is another processing

chain aiming at merging Sentinel-2 and Landsat images. It first performs a linear gap-

filling of the Sentinel-2 SITS and Landsat SITS independently, as well as bicubic up-

sampling of Landsat SITS to 10 meter spatial resolution. It then uses same-day pairs in

order to build a time-series of differences between Landsat and Sentinel-2 bands. This

time-series is linearly interpolated at prediction dates where only Landsat is available,

and added to the Landsat image. Deep-Harmonization Sambandham et al. (2024) is

an ensemble of five Single Image Super-Resolution Unets trained to map individual

Landsat acquisition, including the panchromatic channel, to Sentinel-2 resolution and

spectral bands. The ensemble includes instances of the same Unet architecture with

two different depths and two different up-sampling layers. Being a SISR approach,

Deep-Harmonization does not use Sentinel-2 as input during inference and process

the Landsat image independently for each date. DSTFN Wu et al. (2022) is a Spatio-

Temporal Fusion model that does not require 2 pairs of same-day acquisitions framing

the target date. Instead, DSTFN only requires the Landsat image for target date and an

auxiliary Sentinel-2 image at a close date. To compete with these 4 methods, the TAM-

RFSITS model can be used in different ways. First, it can process the Landsat images

only, in a similar setup as Deep-Harmonization. Second, it can work on Sentinel-2

images only, resorting to the learnt temporal interpolation in order to perform the task.

Finally, it can receive all possible Landsat images and all non-simultaneous Sentinel-2

images.
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Table 9 shows the performances of the 4 competing algorithms as well as the 3

TAMRFSITS runs with the different input configurations: only LR SITS, only HR

SITS and both LR and HR SITS . First, it can be observed that TAMRFSITS systemat-

ically yields better RMSE values than the other algorithms. The worst method in terms

of RMSE is Sen2like. The Sen2like fusion algorithm expects carefully harmonized

surface reflectances between Landsat and Sentinel-2. In this experiment, the fusion

process of Sen2like is instead applied to raw L2A surface reflectances, which can ex-

plain its poor performance. Following Sen2like closely are the both DL based methods,

which also have poor RMSE performances. It can be observed that TAMRFSITS pro-

vides good estimate of Sentinel-2 surface reflectance even in the case where only Land-

sat images are seen by the model (TAMRFSITS no hr). With respect to using only the

HR images for the prediction of TAMRFSITS (TAMRFSITS no lr), adding the Landsat

acquisition of the target date to the inputs allows to systematically decrease both the

mean RMSE and its standard-deviation, which shows that TAMRFSITS makes use of

the Landsat low resolution information in the prediction of Sentinel-2 bands. In terms

of general image IQ, TAMRFSITS also provides almost always the lowest BRISQUE

score, surpassing all methods by a margin of more than 10 BRISQUE points, except

for B4 where STAIR is on par with TAMRFSITS. Among the three variants of TAM-

RFSITS inputs, using only Landsat image yields worse IQ, on par with the other meth-

ods, and using the Landsat image of the target date in addition to the Sentinel-2 SITS,

yields slightly worse IQ than using only the Sentinel-2 SITS, albeit with lower RMSE.

Finally, in terms of spatial resolution enhancement, it can be observed that for the 10

meter bands, all methods manage to retrieve the target resolution (|FR|≈ 0.), to the

exception of Deep-Harmonization, which fails to restore the spatial frequency content

of a 10 meters image despite being a SISR method at its heart. For 20 meters bands

however, only TAMRFSITS and to a lower extent DSTFN manage to provide a spatial

frequency content improvement.

Fig. 12 shows sample predictions for all algorithms and provides a visual con-

firmation of those conclusions. The natural color compositions appear sharp except

for Deep-Harmonization, which is both blurry and radiometrically inaccurate. As mea-

sured in Table 9, IQ is poor for Sen2like and DSTFN. Deep-Harmonization IQ is on par
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RMSE↓ BRISQUE↓ FR↑

Band Method mean std mean std mean std

B4 sen2like 0.031 0.033 29.5 17.2 -0.5 2.8

stair 0.018 0.010 18.9 6.4 0.5 2.1

dh 0.027 0.015 49.0 6.3 -4.5 2.0

dstfn 0.027 0.015 27.4 6.2 0.6 1.9

tamrfsits (no hr) 0.020 0.009 45.9 5.3 -2.7 2.1

tamrfsits (no lr) 0.017 0.010 19.4 7.3 0.4∗ 2.1

tamrfsits (full) 0.015 0.008 20.1 7.5 0.3∗ 2.1

B8a sen2like 0.048 0.033 58.4 10.6 -0.3 2.3

stair 0.033 0.014 48.2 5.2 0.7 1.8

dh 0.041 0.021 65.3 3.8 -1.9 1.5

dstfn 0.047 0.033 23.3 5.7 3.3 2.1

tamrfsits (no hr) 0.031 0.016 42.7 5.0 2.5 1.5

tamrfsits (no lr) 0.029 0.015 14.7 7.0 5.1 1.4

tamrfsits (full) 0.025 0.013 18.2 6.9 4.7 1.5

B12 sen2like 0.036 0.020 65.8 12.5 0.2 2.0

stair 0.025 0.013 52.5 5.1 0.8 1.6

dh 0.029 0.016 64.1 5.0 -1.4 1.5

dstfn 0.035 0.020 29.2 7.6 4.0 1.7

tamrfsits (no hr) 0.021 0.011 37.9 5.3 3.5 1.5

tamrfsits (no lr) 0.022 0.012 15.5 5.8 5.6 1.5

tamrfsits (full) 0.019 0.010 18.1 6.2 5.3 1.4

Table 9: Comparison of the different methods on the spatio-temporal fusion task. Only a subset of bands is

presented. Full results are available in appendix 5. ∗ if usually higher FR means higher spatial resolution

details, in the case of bands that are 10 meter native resolution, the best FR is the closest to zero in absolute

value. Otherwise, ↓ (resp. ↑) indicates that the metric should be minimized (resp. maximized).Best mean

values for each band and metric are highlighted in bold, and second best values are underlined.
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with TAMRFSITS using only Landsat images. Looking a SWIR color compositions,

TAMRFSITS is the only algorithm that provide sharpness and good IQ. DSTFN is

sharper than the other competing algorithms, but bears artifacts similar to aliasing. On

STAIR prediction, an artifact caused by temporal interpolation based on cloud masks

can be observed around the larger of the two lakes. In conclusion, TAMRFSITS pro-

vides the best performances in this spatio-temporal task. It can use only the Landsat

image and yield already consistent results, but the best performances are obtained by

combining the Landsat image at target date with the SITS of Sentinel-2 images ob-

served at other instants. Nevertheless, the same pre-trained TAMRFSITS model can

do both, and even only use Sentinel-2 SITS for prediction. Another benefit of TAM-

RFSITS is that it handles seamlessly the case where the Landsat image at target date

is cloudy, without using any additional mask. It is worth noting that none of the com-

peting methods can make a prediction in this case, since they heavily rely on the LR

observation at target date.

3.3.4. Thermal Sharpening

This last task focuses specifically on sharpening the LST band of Landsat, for ob-

served Landsat dates. In this task, all available Sentinel-2 and Landsat dates are fed to

TAMRFSITS, and the model is asked to predict the date of the Landsat images. We

then measure specifically the performances of the LST band. As a baseline for com-

parison, the Data Mining Sharpener (DMS) Gao et al. (2012) is used. DMS is widely

used in the Thermal Infra Red community, especially for operational productions. In

these experiments, we used the pyDMS2 implementation. In order to provide the High

Resolution input to DMS, the closest Sentinel-2 image that meets a maximum cloud

coverage criterion is selected. Only the 10 meters bands are given to DMS, and the

default parameters of the method are used.

Table 10 shows the performances of TAMRFSITS and DMS on the thermal sharp-

ening task, evaluated on the LS2S2 testing set. In terms of RMSE, DMS has better

performances than TAMRFSITS. This is partly due to its residual compensation mech-

2https://github.com/radosuav/pyDMS
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Figure 12: Predictions of the Spatio-Temporal Fusion task for all methods, on tile 31TCJ, 2022-05-10. First

two rows shows the visible (RGB) color composition, and last two rows shows the SWIR (B8a, B11, B12)

color composition.
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anism, which ensures that the sharpened image matches exactly the input LST image

downsampled back to its initial resolution. TAMRFSITS has a similar constraint ex-

pressed by the Lclear
LR loss term during training, but this constraint is not enforced at

inference time. Still TAMRFSITS mean RMSE is around 1.2K, which is close to the

expected accuracy of LST products. In terms of IQ, TAMRFSITS outputs are far better

graded than DMS outputs. Spatial Frequency restoration is higher for DMS, but its

very high BRISQUE score points out noisy reconstruction, which can explain higher

FR.

RMSE↓ BRISQUE↓ FR↑

Method mean std mean std mean std

DMS 0.024 0.060 81.00 18.93 4.2 4.8

tamrfsits 1.291 1.133 21.10 24.28 3.2 2.3

Table 10: Comparison between DMS and TAMRFSITS on the Thermal Sharpening task. Best results for

each metric are highlighted in bold. ↓ (resp. ↑) indicates that the metric should be minimized (resp. maxi-

mized).

This is confirmed by the visual inspection of sample predictions shown in Fig.

13: DMS predictions are noisier than TAMRFSITS predictions, while TAMRFSITS is

slightly less accurate than DMS, predicting higher LST than what could be expected

from the Landsat input LST. However, it must be stressed that TAMRFSITS is a versa-

tile model that is able to sharpen LST among other capabilities, as opposed to ad hoc

models that focuses on Thermal Sharpening only.

Figure 13: Predictions of the Thermal Sharpening task for DMS and TAMRFSITS, on tile 31TCJ, 2022-

06-03. From left to right: Landsat RGB color composition, Landsat LST, Landsat LST sharpened by DMS,

Landsat LST sharpened by TAMRFSITS.
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3.4. Summary of experiments

In this section, a single pretrained TAMRFSITS model has been used to solve 4

different downstream tasks. For each of these tasks, the pre-trained model has been

compared to algorithms from the literature which have been specifically designed to

solve the task at stake. The experiments show that TAMRFSITS is on par or better

than those algorithms in all the tasks, except for the Thermal Sharpening tasks where it

still performs reasonably well with a better IQ. Those experiments also demonstrate the

benefits of using a single versatile model: cloud removal when performing Sentinel-

2 20-meter bands sharpening, or the ability to input Landsat SITS, Sentinel-2 SITS or

both and always get consistent predictions without modifying and retraining the model.

It is important to keep in mind that results presented in this section are measured in the

frame of limitations imposed by the dataset as well as the competing algorithms. For

instance, RMSE is always measured on pixels of acquired reference dates that are not

masked, but TAMRFSITS also produce consistent outputs even when and where there

is no reference value to compare to. In the spatio-temporal fusion task, only 6 Sentinel-

2 bands are evaluated because the competing algorithms only process those 6 bands,

but TAMRFSITS predicts the 10 Sentinel-2 bands and the 8 Landsat bands.

4. Discussions and Conclusion

4.1. Discussion

4.1.1. Training on larger datasets

An important limitation is the limited geographical and temporal span of the LS2S2

dataset. While it has been very useful to demonstrate the concept behind TAMRFSITS,

it only spans a single year and has a geographical coverage mostly centered over Eu-

rope. If TAMRFSITS were to be used as a production model, it most certainly needs

to be trained and evaluated on global scale, multi-year dataset.

4.1.2. Model complexity

In TAMRFSITS, the attention based operations are performed at the target resolu-

tion. Memory consumption of the temporal transformer is mostly linear with respect
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to the number of input dates, and working at target resolution means that this memory

consumption is high, though each pixel can be processed separately at this stage. The

number of input dates to the temporal Transfomer is also the main driver for inference

time. Reducing the number of parameters of the transformer is the most straightfor-

ward action toward reducing inference cost and memory print. However, evaluating

how this reduction affects the model performances is still to be determined.

4.1.3. Meteorological conditioning

Performances on Land Surface Temperature could be improved and extended to

unseen dates by conditioning the prediction on meteorological data using data sources

such as AGERA5. This would allow for a continuous prediction of LST through time,

which is not currently possible.

4.1.4. Generalization to other sensors

TAMRFSITS is a very versatile model that solve many tasks without retraining.

It supports variable number of input Sentinel-2 and Landsat dates and can predict a

variable number of target dates. There is also nothing in the problem formulation or the

model architecture that restrict TARMFSITS to only a pair of sensors. However, using

different sensors or extending to a greater number of sensors will require adapting the

model architecture, by including additional spatial encoders and extending the spatial

decoder to predict more spectral bands. Then this new instance of the model will need

to be trained for those new sensors. With the advent of foundation models, architectures

such as PercieverIO Jaegle et al. (2021) could alleviate the need for those retraining

by encoding the spectral, spatial and temporal context of each band for each sensor,

yielding a generic model that could integrate any optical sensor, even if it has not been

seen during training. This would require to revisit the architecture of TARMFSITS, but

the training process proposed in this paper could be used to train such a model.

4.1.5. Toward new L3A products

TAMRFSITS is not trained for a specific task and can be used for various tasks, as

demonstrated in section 3.3. One interesting way of using TAMRFSITS is generating

joint Landsat and Sentinel-2 Level 3A monthly synthesis Hagolle et al. (2021). Those
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products are generated by weighted averaging of images comprised in each month,

taking into account cloud masks. This level of product is very interesting for users,

because it simplifies the use of the data by offering a regular, global time grid. However,

because they rely on cloud masks to determine valid pixels, current methods can yield

artifacts such as those shown in Fig. 9. The dates averaged for a given pixel also

depend on the cloud mask, and each pixel is therefore a different mix of several dates.

Current L3A products therefore do not correspond to a specific date.

TAMRFSITS can produce regular cloud-free L2 predictions with any time-step by

using all observed Landsat and Sentinel-2 dates. Fig. 14 shows an example of such L2

products generated by TAMRFSITS, by requesting a prediction every 15th day of the

month. Note that all bands, including B8A, B11 and B12 are true 10-meter resolution,

and that there are no cloud mask interpolation artifacts. This could be used instead of

L3 products. If one requires real monthly synthesis, the time-step could be reduced to

10 our 5 days and the predictions could be statistically aggregated. In both cases, the

products for the user would be free of spurious cases and interpolation artifacts.

Figure 14: Level 3A monthly synthesis produced by TAMRFSITS from all observed Sentinel-2 and Landsat

data over the 31TCJ AOIs. The two top rows displays the natural color composition (B4,B3, B2), while the

two bottom rows display the SWIR color composition (B9A, B11, B12).
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4.2. Conclusion

In this paper, we generalize the problem of temporal interpolation, spatial reso-

lution enhancement and spatio-temporal fusion into a single original problem formu-

lation. This problem formulation allows overcoming limitations that have been re-

stricting the capabilities of methods proposed in the literature for decades. We then

proposed TAMRFSITS, a DL architecture and training framework that allows to solve

the generic problem formulation. This original architecture leverages a combination

of Residual CNN for the spatial encoding with a Transformer for temporal encod-

ing. Observation from both sensors are informed by Temporal Positional Encoding as

well as a learnable sensor token, enabling the Transformer to exploit this information

in the reconstruction. We demonstrated TAMRFSITS capabilities on a new dataset

comprising one year of joint Sentinel-2 and Landsat SITS. The TAMRFSITS has un-

matched versatility: it can process any number of Sentinel-2 dates and any number

of Landsat dates, and it predicts all bands from both sensors at 10-meter spatial res-

olution, for any target date. All these capabilities are achieved by a single instance

of the TAMRFSITS model, trained on a MAE pretext task. We compared TAMRF-

SITS to existing models in the literature on four tasks: gap-filling, band-sharpening

of Sentinel-2 20-meter bands, Spatio-Temporal Fusion, and Thermal sharpening. For

all these tasks, TAMRFSITS is on par or better than existing models, except for Ther-

mal Sharpening, where it still shows good performances and high IQ. TAMRFSITS

can also solve those tasks with capabilities that no other method can offer, such as

cloud removal when performing Sentinel-2 20-meter bands sharpening, or the ability

to input Landsat SITS, Sentinel-2 SITS or both and always get consistent predictions

without modifying and retraining the model. Finally, we demonstrated the potential of

TAMRFSITS in redefining Level 3A processing into a multi-sensor, spatial-resolution

enhanced, temporally accurate and artifact free product. Our future work includes

generalizing TAMRFSITS to any optical sensor and any spatial resolution, without

retraining, which will result in a foundation model for SITS fusion. We also envi-

sion to condition TAMRFSITS predictions with exogenous data such as meteorological

time-series. The complete source code for training and experiments is available here:

https://github.com/Evoland-Land-Monitoring-Evolution/tamrfsits.
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S2 B6 naive 0.008 0.005 0.040 0.046 48.6 11.4 49.3 11.9 1.1 2.2 1.0 2.2

tamrfsits 0.013 0.015 0.037 0.040 12.6 6.0 14.6 6.3 5.9 1.9 5.7 2.4

S2 B7 naive 0.009 0.005 0.043 0.043 47.9 11.5 48.6 12.1 1.1 2.1 0.9 2.1

tamrfsits 0.014 0.015 0.039 0.038 13.5 6.0 14.5 6.5 5.6 1.8 5.6 2.2

S2 B8 naive 0.000 0.000 0.046 0.044 16.5 17.2 17.4 18.2 0.9 2.2 0.8 2.4

tamrfsits 0.014 0.016 0.043 0.038 12.0 6.3 15.8 7.0 0.8 2.0 0.7 2.4

S2 B8a naive 0.009 0.004 0.043 0.040 48.6 11.5 49.3 12.0 1.0 2.1 0.9 2.1

tamrfsits 0.014 0.015 0.040 0.035 13.7 6.3 14.6 6.9 5.6 1.7 5.6 2.2

S2 B11 naive 0.005 0.002 0.031 0.021 55.9 11.1 56.3 11.4 1.0 2.0 1.0 2.0

tamrfsits 0.011 0.007 0.030 0.019 14.4 10.0 14.3 6.4 6.6 1.8 6.2 2.3

S2 B12 naive 0.005 0.002 0.025 0.018 55.4 11.8 56.0 12.2 1.0 2.0 1.0 2.0

tamrfsits 0.010 0.006 0.024 0.017 15.5 9.6 15.3 6.4 6.4 1.9 6.1 2.3

Table 11: Comparison between TAMRFSITS model and naive interpolation on the gap-filling task, where

regular gaps of 30 days are masked from the input SITS and kept appart for validation. Only a selection of

spectral bands is presented. Full results are available in appendix 5. ↓ (resp. ↑) indicates that the metric

should be minimized (resp. maximized). Best mean values for each metric and each band are highlithed in

bold.
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RMSE↓ BRISQUE↓ FR↑

Clear Masked Clear Masked Clear Masked

Band Method mean std mean std mean std mean std mean std mean std

LS B1 naive 0.002 0.001 0.010 0.008 84.6 6.1 84.8 6.0 0.9 1.9 0.7 2.0

tamrfsits 0.005 0.018 0.008 0.004 42.8 14.7 46.1 19.8 6.9 1.8 7.2 2.1

LS B2 naive 0.002 0.001 0.011 0.010 81.8 5.6 81.9 5.4 0.9 2.0 0.7 2.1

tamrfsits 0.005 0.018 0.008 0.005 37.5 13.8 38.4 17.3 7.2 1.8 7.4 2.1

LS B3 naive 0.003 0.001 0.015 0.014 76.9 4.4 76.9 4.1 1.1 2.3 0.8 2.4

tamrfsits 0.006 0.017 0.010 0.007 29.0 10.4 24.9 9.3 7.3 1.8 7.6 2.0

LS B4 naive 0.005 0.002 0.020 0.018 72.6 3.7 72.6 3.4 0.9 1.9 0.9 2.3

tamrfsits 0.007 0.018 0.014 0.010 26.6 10.9 21.2 9.0 7.4 1.6 7.6 1.9

LS B5 naive 0.006 0.001 0.031 0.025 71.1 2.5 71.6 2.1 1.4 2.8 1.0 2.8

tamrfsits 0.012 0.012 0.027 0.014 27.5 12.2 13.6 7.2 7.0 1.9 7.7 2.0

LS B6 naive 0.007 0.001 0.035 0.028 69.0 1.4 69.2 1.4 1.1 2.4 1.0 2.4

tamrfsits 0.010 0.012 0.024 0.014 26.4 13.3 13.2 5.6 7.4 1.7 7.7 1.8

LS B7 naive 0.006 0.001 0.030 0.027 69.9 2.0 70.0 1.8 1.0 2.0 0.9 2.2

tamrfsits 0.009 0.013 0.020 0.014 25.6 12.8 14.7 6.0 7.3 1.5 7.7 1.7

LS LST naive 0.460 0.449 82.3 9.8 1.9 4.5

tamrfsits 1.270 0.927 19.3 20.0 3.2 2.1

S2 B2 naive 0.000 0.000 0.031 0.055 18.9 8.3 20.9 8.9 1.8 3.3 1.7 3.8

tamrfsits 0.010 0.019 0.028 0.051 20.6 10.6 26.5 11.3 1.7 3.3 1.5 3.9

S2 B3 naive 0.000 0.000 0.032 0.055 14.9 5.4 16.6 5.6 1.6 3.0 1.4 3.4

tamrfsits 0.010 0.018 0.029 0.050 15.1 6.4 20.6 6.7 1.5 3.1 1.3 3.5

S2 B4 naive 0.000 0.000 0.036 0.055 17.5 6.8 18.5 6.7 1.4 2.8 1.2 3.1

tamrfsits 0.011 0.018 0.032 0.049 17.5 8.0 20.9 7.8 1.4 2.8 1.2 3.3

S2 B5 naive 0.006 0.005 0.037 0.053 47.3 4.5 47.8 4.8 1.7 2.5 1.5 2.6

tamrfsits 0.012 0.018 0.033 0.048 12.3 6.0 15.3 5.7 6.0 2.3 5.8 2.6

S2 B6 naive 0.008 0.004 0.045 0.046 47.2 4.5 47.9 4.9 1.4 2.2 1.3 2.4

tamrfsits 0.014 0.017 0.040 0.042 12.5 6.2 14.5 6.2 5.8 1.9 5.7 2.4

S2 B7 naive 0.009 0.004 0.048 0.042 46.5 4.6 47.1 4.8 1.3 2.1 1.2 2.3

tamrfsits 0.015 0.017 0.043 0.039 13.4 6.2 14.3 6.4 5.5 1.7 5.5 2.2

S2 B8 naive 0.000 0.000 0.052 0.043 12.9 6.3 13.9 6.0 0.8 2.0 0.7 2.4

tamrfsits 0.015 0.017 0.046 0.039 11.8 6.3 16.0 6.9 0.8 1.9 0.6 2.4

S2 B8a naive 0.009 0.004 0.049 0.039 47.3 4.9 47.9 5.1 1.3 2.0 1.2 2.2

tamrfsits 0.016 0.016 0.043 0.036 13.6 6.6 14.5 6.7 5.5 1.6 5.6 2.1

S2 B11 naive 0.005 0.002 0.035 0.021 54.3 5.6 55.0 5.8 1.5 2.1 1.4 2.3

tamrfsits 0.012 0.008 0.030 0.019 14.5 11.1 14.4 6.2 6.5 1.9 6.2 2.2

S2 B12 naive 0.005 0.002 0.029 0.019 52.9 6.2 53.8 6.4 1.5 2.2 1.4 2.4

tamrfsits 0.010 0.007 0.026 0.017 15.8 10.6 15.4 6.3 6.3 2.1 6.0 2.3

Table 12: Full results table for the comparison between TAMRFSITS model and naive interpolation on the

gap-filling task, where regular gaps of 30 days are masked from the input SITS and kept appart for validation.

Only a selection of spectral bands is presented. Full results are available in appendix 5. ↓ (resp. ↑) indicates

that the metric should be minimized (resp. maximized).
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RMSE↓ BRISQUE↓ FR↑

Band Method mean std mean std mean std

B5 dsen2 0.003 0.002 27.696 4.900 4.2 0.7

tamrfsits 0.011 0.015 12.671 5.857 6.1 2.3

B6 dsen2 0.003 0.001 25.347 5.272 4.5 0.5

tamrfsits 0.013 0.014 12.863 6.183 5.9 1.9

B7 dsen2 0.004 0.001 24.557 5.700 4.5 0.5

tamrfsits 0.015 0.014 13.766 6.163 5.6 1.8

B8a dsen2 0.004 0.001 24.906 5.477 4.5 0.4

tamrfsits 0.015 0.014 13.940 6.501 5.6 1.7

B11 dsen2 0.002 0.001 33.227 5.204 3.9 0.6

tamrfsits 0.012 0.010 14.788 10.035 6.5 1.8

B12 dsen2 0.002 0.001 32.182 4.992 4.0 0.7

tamrfsits 0.010 0.009 15.783 9.712 6.4 2.0

Table 13: Full results table for the comparison between TAMRFSITS and DSen2 on the sharpening of

Sentinel-2 20m bands, for a selection of bands. ↓ (resp. ↑) indicates that the metric should be minimized

(resp. maximized).
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RMSE↓ BRISQUE↓ FR↑

Band Method mean std mean std mean std

B2 sen2like 0.028 0.040 30.9 19.5 0.1 3.6

stair 0.014 0.008 21.2 8.2 0.9 2.9

dh 0.028 0.013 54.7 9.3 -5.3 2.7

dstfn 0.023 0.012 28.4 9.0 0.4 2.6

tamrfsits (no hr) 0.015 0.007 49.8 6.8 -3.0 3.0

tamrfsits (no lr) 0.013 0.008 25.1 10.9 0.5 2.9

tamrfsits (full) 0.012 0.005 23.4 10.7 0.5 2.9

B3 sen2like 0.028 0.036 28.0 17.3 -0.4 3.3

stair 0.016 0.008 17.0 5.3 0.7 2.6

dh 0.027 0.015 50.7 7.6 -5.0 2.4

dstfn 0.024 0.013 27.5 4.4 0.5 2.2

tamrfsits (no hr) 0.017 0.008 47.4 5.5 -3.1 2.5

tamrfsits (no lr) 0.015 0.009 19.3 6.2 0.5 2.5

tamrfsits (full) 0.013 0.006 19.8 6.9 0.3 2.5

B4 sen2like 0.029 0.017 61.5 16.7 -3.4 2.6

stair 0.018 0.010 18.9 6.4 0.5 2.1

dh 0.027 0.015 49.0 6.3 -4.5 2.0

dstfn 0.027 0.015 27.4 6.2 0.6 1.9

tamrfsits (no hr) 0.020 0.009 45.9 5.3 -2.7 2.1

tamrfsits (no lr) 0.017 0.010 19.4 7.3 0.4 2.1

tamrfsits (full) 0.015 0.008 20.1 7.5 0.3 2.1

B8a sen2like 0.048 0.033 58.4 10.6 -0.3 2.3

stair 0.033 0.014 48.2 5.2 0.7 1.8

dh 0.041 0.021 65.3 3.8 -1.9 1.5

dstfn 0.047 0.033 23.3 5.7 3.3 2.1

tamrfsits (no hr) 0.031 0.016 42.7 5.0 2.5 1.5

tamrfsits (no lr) 0.029 0.015 14.7 7.0 5.1 1.4

tamrfsits (full) 0.025 0.013 18.2 6.9 4.7 1.5

B11 sen2like 0.042 0.027 66.8 11.2 0.2 2.2

stair 0.029 0.013 54.3 5.0 0.9 1.6

dh 0.036 0.018 64.0 4.6 -1.3 1.6

dstfn 0.041 0.027 27.0 8.0 4.1 2.0

tamrfsits (no hr) 0.026 0.013 37.4 5.6 3.8 1.5

tamrfsits (no lr) 0.026 0.013 15.1 5.9 5.8 1.5

tamrfsits (full) 0.023 0.011 17.7 6.3 5.4 1.4

B12 sen2like 0.036 0.020 65.8 12.5 0.2 2.0

stair 0.025 0.013 52.5 5.1 0.8 1.6

dh 0.029 0.016 64.1 5.0 -1.4 1.5

dstfn 0.035 0.020 29.2 7.6 4.0 1.7

tamrfsits (no hr) 0.021 0.011 37.9 5.3 3.5 1.5

tamrfsits (no lr) 0.022 0.012 15.5 5.8 5.6 1.5

tamrfsits (full) 0.019 0.010 18.1 6.2 5.3 1.4

Table 14: Full results table of the comparison of the different methods on the spatio-temporal fusion task.

Only a subset of bands is presented. Full results are available in appendix 5. ∗ if usually higher FR means

higher spatial resolution details, in the case of bands that are 10 meter native resolution, the best FR is the

closest to zero in absolute value. Otherwise, ↓ (resp. ↑) indicates that the metric should be minimized (resp.

maximized).
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